作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 暨南大学理工学院光电工程系, 广州 510000
稀土离子掺杂氟化物晶体具有宽透光波段高透过率、低声子能量、长荧光寿命、负热光系数等优良特性, 可以产生从紫外到中红外波段激光, 是一类重要的激光增益介质。本文综述了本团队在稀土离子掺杂LiLuF4、LiYF4、BaY2F8、LaF3、PbF2、CeF3等氟化物晶体生长、光学和激光性能等方面的研究进展, 总结了稀土离子共掺敏化、退激活、能级耦合调控以及多离子发光等方面的研究工作, 展望了稀土离子掺杂氟化物激光晶体的研究发展趋势。
稀土离子 氟化物晶体 激光晶体 晶体生长 光学性能 激光性能 rare-earth ion fluoride crystal laser crystal crystal growth optical property laser property 
人工晶体学报
2022, 51(9-10): 1573
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of High-Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 e-mail: yhang@siom.ac.cn
Residual infrared absorption is a key problem affecting the laser emission efficiency of Ti:sapphire crystal. In this paper, the origin of residual infrared absorption of Ti:sapphire crystal is systematically studied by using the first principles method. According to the contact conditions of O octahedron in the crystal structure of Al2O3, four Ti3+-Ti3+ ion pair models and three Ti4+-Ti3+ ion pair models were defined and constructed. For what we believe is the first time, the near-infrared absorption spectra consistent with the experimental results were obtained in specific theoretical models. The electronic structures, absorption spectra, and charge distributions calculated show that the line-contact Ti3+-Ti3+ ion pair with antiferromagnetic coupling and the face-contact Ti4+-Ti3+ ion pair are two main contributors to the residual infrared absorption of Ti:sapphire, while some other ion pair models provide a basis to explain more complex residual infrared absorption.
Photonics Research
2021, 9(6): 06000909
Author Affiliations
Abstract
1 Key Laboratory of Material Science and Technology for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
LiLuF4 single crystals co-doped with thulium (5%) and holmium (0.5%), having large size, intact shape, and high optical quality, are successfully grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal are measured. The absorption spectrum shows that the main absorption band locates at near 686 and 792 nm and the °uorescence spectrum peaks at 2.05 \mu m. At room temperature, the as-grown Tm, Ho: LiLuF4 single crystals are end-pumped by a fiber-coupled laser diode system with pumping wavelength of 795 nm under CW operations. A power of 50 mw continuous laser output at 2.05 \mu m wavelength is achieved. Meanwhile an obvious green light is detected.
Tm Ho:LuLF晶体 2μm激光 提拉法 上转换 160.3380 Laser materials 160.5690 Rare-earth-doped materials 160.4760 Optical properties 140.3380 Laser materials 
Chinese Optics Letters
2010, 8(1): 63

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!